Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Anat Sci Educ ; 17(3): 514-528, 2024.
Article in English | MEDLINE | ID: mdl-38344900

ABSTRACT

The purpose of this review was to (1) analyze the effectiveness of immersive virtual reality (iVR) and augmented reality (AR) as teaching/learning resources (collectively called XR-technologies) for gaining anatomy knowledge compared to traditional approaches and (2) gauge students' perceptions of the usefulness of these technologies as learning tools. This meta-analysis, previously registered in PROSPERO (CRD42023423017), followed PRISMA guidelines. A systematic bibliographical search, without time parameters, was conducted through four databases until June 2023. A meta-analytic approach investigated knowledge gains and XR's usefulness for learning. Pooled effect sizes were estimated using Cohen's standardized mean difference (SMD) and 95% confidence intervals (95% CI). A single-group proportional meta-analysis was conducted to quantify the percentage of students who considered XR devices useful for their learning. Twenty-seven experimental studies, reporting data from 2199 health sciences students, were included for analysis. XR-technologies yielded higher knowledge gains than traditional approaches (SMD = 0.40; 95% CI = 0.22 to 0.60), especially when used as supplemental/complementary learning resources (SMD = 0.52; 95% CI = 0.40 to 0.63). Specifically, knowledge performance using XR devices outperformed textbooks and atlases (SMD = 0.32; 95% CI = 0.10 to 0.54) and didactic lectures (SMD = 1.00; 95% CI = 0.57 to 1.42), especially among undergraduate students (SMD = 0.41; 95% CI = 0.20 to 0.62). XR devices were perceived to be more useful for learning than traditional approaches (SMD = 0.54; 95% CI = 0.04 to 1), and 80% of all students who used XR devices reported these devices as useful for learning anatomy. Learners using XR technologies demonstrated increased anatomy knowledge gains and considered these technologies useful for learning anatomy.


Subject(s)
Anatomy , Augmented Reality , Virtual Reality , Humans , Anatomy/education , Learning , Students
2.
J Neuroeng Rehabil ; 20(1): 42, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041557

ABSTRACT

OBJECTIVE: This study aims to conduct a meta-analysis to assess the effect of virtual reality-based therapy (VRBT) on balance dimensions and fear of falling in patients with multiple sclerosis (PwMS). Secondarily, to determine the most recommendable dose of VRBT to improve balance. METHODS: PubMed Medline, Web of Science, Scopus, CINAHL and PEDro were screened, without publication date restrictions, until September 30th, 2021. Randomized controlled trials (RCTs) comparing the effectiveness of VRBT against other interventions in PwMS were included. Functional and dynamic balance, confidence of balance, postural control in posturography, fear of falling and gait speed were the variables assessed. A meta-analysis was performed by pooling the Cohen's standardized mean difference (SMD) with 95% confidence interval (95% CI) using Comprehensive Meta-Analysis 3.0. RESULTS: Nineteen RCTs, reporting 858 PwMS, were included. Our findings reported that VRBT is effective in improving functional balance (SMD = 0.8; 95%CI 0.47 to 1.14; p < 0.001); dynamic balance (SMD = - 0.3; 95%CI - 0.48 to - 0.11; p = 0.002); postural control with posturography (SMD = - 0.54; 95%CI - 0.99 to - 0.1; p = 0.017); confidence of balance (SMD = 0.43; 95%CI 0.15 to 0.71; p = 0.003); and in reducing fear of falling (SMD = - 1.04; 95%CI - 2 to - 0.07; p = 0.035); but not on gait speed (SMD = - 0.11; 95%CI: - 0.35 to 0.14; p = 0.4). Besides, the most adequate dose of VRBT to achieve the greatest improvement in functional balance was at least 40 sessions, five sessions per week and 40-45 min per sessions; and for dynamic balance, it would be between 8 and 19 weeks, twice a week and 20-30 min per session. CONCLUSION: VRBT may have a short-term beneficial role in improving balance and reducing fear of falling in PwMS.


Subject(s)
Multiple Sclerosis , Virtual Reality , Humans , Accidental Falls/prevention & control , Randomized Controlled Trials as Topic , Physical Therapy Modalities
3.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560281

ABSTRACT

BACKGROUND: Motor, gait and balance disorders reduce functional capabilities for activities of daily living in children with cerebral palsy (CP). Robot-assisted gait therapy (RAGT) is being used to complement conventional therapy (CT) or treadmill therapy (TT) in CP rehabilitation. The aim of this systematic review is to assess the effect of RAGT on gait, balance and functional independence in CP children, in comparison to CT or TT. METHODS: We have conducted a systematic review with meta-analysis. A search in PubMed Medline, Web of Science, Scopus, CINAHL, PEDro and SciELO has been conducted for articles published until October 2022. Controlled clinical trials (CCT), in which RAGT was compared to TT or CT and assessed gait speed, step and stride length, width step, walking distance, cadence, standing ability, walking, running and jumping ability, gross motor function and functional independence in children with CP, have been included. Methodological quality was assessed with the PEDro scale and the pooled effect was calculated with Cohen's Standardized Mean Difference (SMD) and its 95% Confidence Interval (95% CI). RESULTS: A total of 15 CCTs have been included, providing data from 413 participants, with an averaged methodological quality of 5.73 ± 1.1 points in PEDro. The main findings of this review are that RAGT shows better results than CT in the post-intervention assessment for gait speed (SMD 0.56; 95% CI 0.03 to 1.1), walking distance (SMD 2; 95% CI 0.36 to 3.65) and walking, running and jumping ability (SMD 0.63; 95% CI 0.12 to 1.14). CONCLUSIONS: This study shows that the effect of RAGT is superior to CT on gait speed, walking distance and walking, running and jumping ability in post-intervention, although no differences were found between RAGT and TT or CT for the remaining variables.


Subject(s)
Cerebral Palsy , Robotics , Humans , Child , Robotics/methods , Activities of Daily Living , Gait , Walking , Exercise Therapy/methods
4.
Brain Sci ; 11(11)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34827433

ABSTRACT

(1) Objective: To evaluate the effectiveness of non-immersive virtual reality in reducing falls and improving balance in patients diagnosed with Parkinson's disease. (2) Methods: The following databases were searched: PUBMED, PEDro, Scielo, CINAHL, Web of Science, Dialnet, Scopus and MEDLINE. These databases were searched for randomized controlled trials published using relevant keywords in various combinations. The methodological quality of the articles was evaluated using the PEDro scale. (3) Results: A total of 10 studies with a total of 537 subjects, 58.7% of which (n = 315) were men, have been included in the review. The age of the participants in these studies ranged between 55 and 80 years. Each session lasted between 30 and 75 min, and the interventions lasted between 5 and 12 weeks. These studies showed that non-immersive virtual reality is effective in reducing the number of falls and improving both static and dynamic balance in patients diagnosed with Parkinson's disease. Results after non-immersive virtual reality intervention showed an improvement in balance and a decrease in the number and the risk of falls. However, no significant differences were found between the intervention groups and the control groups for all the included studies regarding balance. (4) Conclusions: There is evidence that non-immersive virtual reality can improve balance and reduce the risk and number of falls, being therefore beneficial for people diagnosed with Parkinson's disease.

5.
J Pers Med ; 11(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34834518

ABSTRACT

BACKGROUND: Virtual reality-based therapy (VRBT) is a novel therapeutic approach to be used in women with fibromyalgia syndrome (FMS). The aim of our study is to assess the effect of VRBT to reduce the impact of FMS in outcomes such as pain, dynamic balance, aerobic capacity, fatigue, quality of life (QoL), anxiety and depression. METHODS: Systematic review with meta-analysis was conducted from a bibliographic search in PubMed, Scopus, PEDro, Web of Science and CINAHL until April 2021 in accordance with PRISMA guidelines. We included randomized controlled trials (RCTs) that compare VRBT versus others to assess the mentioned outcomes in women with FMS. Effect size was calculated with standardized mean difference (SMD) and its 95% confidence interval (95% CI). RESULTS: Eleven RCTs involving 535 women with FMS were included. Using the PEDro scale, the mean methodological quality of the included studies was moderate (6.63 ± 0.51). Our findings showed an effect of VRBT on the impact of FMS (SMD -0.62, 95% CI -0.93 to -0.31); pain (SMD -0.45, 95% CI -0.69 to -0.21); dynamic balance (SMD -0.76, 95% CI -1.12 to -0.39); aerobic capacity (SMD 0.32, 95% CI 0.004 to 0.63); fatigue (SMD -0.58, 95% CI -1.02 to -0.14); QoL (SMD 0.55, 95% CI 0.3 to 0.81); anxiety (SMD -0.47, 95% CI -0.91 to -0.03) and depression (SMD -0.46, 95% CI -0.76 to -0.16). CONCLUSIONS: VRBT is an effective therapy that reduces the impact of FMS, pain, fatigue, anxiety and depression and increases dynamic balance, aerobic capacity and quality of life in women with FMS. In addition, VRBT in combination with CTBTE showed a large effect in reducing the impact of FMS and fatigue and increasing QoL in these women.

6.
Sensors (Basel) ; 21(21)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34770694

ABSTRACT

Patients with multiple sclerosis (PwMS) have a high level of fatigue and a reduced quality of life (QoL) due to the impact of multiple sclerosis (MS). Virtual reality-based therapy (VRBT) is being used to reduce disability in PwMS. The aim of this study was to assess the effect of VRBT on fatigue, the impact of MS, and QoL in PwMS. METHODS: A systematic review with meta-analysis was conducted through a bibliographic search on PubMed, Scopus, Web of Science, and PEDro up to April 2021. We included randomized controlled trials (RCTs) with PwMS that received VRBT in comparison to conventional therapy (CT) including physiotherapy, balance and strength exercises, and stretching or physical activity, among others; or in comparison to simple observation; in order to assess fatigue, MS-impact, and QoL. The effect size was calculated using Cohen's standardized mean difference with a 95% confidence interval (95% CI). RESULTS: Twelve RCTs that provided data from 606 PwMS (42.83 ± 6.86 years old and 70% women) were included. The methodological quality mean, according to the PEDro Scale, was 5.83 ± 0.83 points. Our global findings showed that VRBT is effective at reducing fatigue (SMD -0.33; 95% CI -0.61, -0.06), lowering the impact of MS (SMD -0.3; 95% CI -0.55, -0.04), and increasing overall QoL (0.5; 95% CI 0.23, 0.76). Subgroup analysis showed the following: (1) VRBT is better than CT at reducing fatigue (SMD -0.4; 95% CI -0.7, -0.11), as well as in improving the mental dimension of QoL (SMD 0.51; 95% CI 0.02, 1); (2) VRBT is better than simple observation at reducing the impact of MS (SMD -0.61; 95% CI -0.97, -0.23) and increasing overall QoL (SMD 0.79; 95% CI 0.3, 1.28); and (3) when combined with CT, VRBT is more effective than CT in improving the global (SMD 0.6, 95% CI 0.13, 1.07), physical (SMD 0.87; 95% CI 0.3, 1.43), and mental dimensions (SMD 0.6; 95% CI 0.08, 1.11) of QoL. CONCLUSION: VRBT is effective at reducing fatigue and MS impact and improving QoL in PwMS.


Subject(s)
Multiple Sclerosis , Virtual Reality , Adult , Exercise , Fatigue/therapy , Female , Humans , Male , Middle Aged , Multiple Sclerosis/therapy , Quality of Life
7.
Front Psychol ; 12: 648552, 2021.
Article in English | MEDLINE | ID: mdl-34093334

ABSTRACT

The ongoing pandemic caused by coronavirus disease 2019 (COVID-19) has enforced a shutdown of educative institutions of all levels, including high school and university students, and has forced educators and institutions to adapt teaching strategies in a hasty way. This work reviews the use of gamification-based teaching during the pandemic lockdown through a search in Scopus, PsycINFO, ERIC, and Semantic Scholar databases. A total of 11 papers from Chemistry, Business, Computer Science, Biology, and Medical areas have been identified and included in the present work. All of them analyzed the use of gamification strategies during the COVID-19 pandemic and assessed student's learning and motivation outcomes. In general, students reported that gamification was innovative, engaging, and an efficient strategy to deliver curricula material; moreover, it was perceived as a fun activity. Some students reported that gamified videoconferences aided to connect with their classmates during isolation time providing effective social support. However, some students reported a bad physical or psychological condition, as consequence of the confinement, and did not get involved in the activity. Some weaknesses of the reviewed studies are the small sample size and its homogeneity, which makes it difficult to generalize their results to other scenarios and academic areas. Furthermore, although there is a feeling of learning during the activity, this result is mainly based on subjective perceptions, and any of the studies demonstrated that superior learning was achieved in comparison with traditional teaching strategies. Nevertheless, gamification can be implemented together with traditional lectures and can be a valuable instrument during post-COVID times.

8.
Brain Sci ; 10(5)2020 May 15.
Article in English | MEDLINE | ID: mdl-32429085

ABSTRACT

Stroke is a neurologic disorder considered the first cause of disability worldwide due to motor, cognitive, and sensorial sequels. Balance dysfunctions in stroke survivors increase the risk of falls and physiotherapeutic rehabilitation is essential to reduce it. Virtual reality (VR) seems to be an alternative to conventional physiotherapy (CT), providing virtual environments and multisensorial inputs to train balance in stroke patients. The aim of this study was to assess if immersive VR treatment is more effective than CT to improve balance after stroke. This study got the approval from the Ethics Committee of the University of Almeria. Three chronic ischemic stroke patients were selected. One patient who received 25 sessions of immersive VR intervention for two months was compared with another patient who received equivalent CT and a third patient with no intervention. Balance, gait, risk of falling, and vestibular and visual implications in the equilibrium were assessed. After the interventions, the two patients receiving any of the treatments showed an improvement in balance compared to the untreated patient. In comparison to CT, our results suggest a higher effect of immersive VR in the improvement of balance and a reduction of falls risk due to the active upright work during the VR intervention.

SELECTION OF CITATIONS
SEARCH DETAIL
...